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ON THE PROBLEM OF DYNCVllIC CONTACT ANGLE* 

V.V. PUKHNACHHV and V.A. SOLONNIKOV 

Plane motion of a viscous incompressible fluid bounded by a rectangular rigid wall 
and a free boundary of constant form is investigated. The free boundary is in con- 
tact with the rigid wall at a point which moves along the wall, coming into contact 
with it at a constant rate. The asymptotics of the velocity field near the point 
of contact is computed under the assumption that the motion is stationary in the 
coordinate system attached to the moving free boundary and, that the energy is dis- 
sipated as a finite rate. 

To date.a fairly detailed study has been made of the mathematical formulationofproblems 
concerning the steady state motion of a viscous fluid in the presence of points or lines of 
contact between the free boundary and the solid wall (**). 

It is essential that the point (or line) of contact is assumed fixed with respect to the 
wall at rest. This makes possible the formulation of the boundary condition for the approach 
of the free boundary to the point of contact at a prescribed angle determined by the condition 
of static equilibrium of the three media at this point /5/ (see also the discussion of this 
problem in /6/J. The situation becomes much more complicated when the point of contact is in 
motion. The difficulties arising will be explained using an example of stationary motion. in 
a coordinate system attached to the point of contact. Such a motion can be realized, e.g. in 
the problem of filling a capillary /7/. The formulation of a plane analog of the capillary 
filling problem in given in Sect.2, and the flow is discussed below is assumed to be plane. 
The assumption is not essential, but reduces the amount of manipulation. 

1. Basic hypothesis. We consider a stationary solution of the Navier-Stokesequations 
in. the region SC R2 bounded by a free boundary r described by the equation rp = f (2,) and 
a rigid wall x2 = 0 moving along the X,-axis with velocity of -v# 0 (Fig.1). We assume 
that f (0) = 0, f > 0 for 1 z1 J < a with certain a> 0, and that fe C* [-0,al. We introduce 
the following notation: R+a denotes the half-plane xp>O, IT, is a semicircle .rlt + x,*<u*, 
x2> 0, 0,is the angle between the tangent ot rat the point of contact 0 and the negative 
direction of the xl-axis and n is the unit vector of the outward normal to curve r. Since 

r E f?, it follows that n is a smooth vector field. A smooth 'continuation of the field II 
into the region a 0 II, = o exists at sufficiently smooth a, andwe shall continue to denote 
it by n. 

We assume that the ccanponents u1 and v2 of the velocity vector v belong to the Sobolev 
space wzl(o) (the assumption guarantees the finiteness of.velocity of the dissipation rate 
and the kinetic energy of the fluid near the point 0). Let us define the functions 

Vn=v.n, w (Xl, sz) = 
( 

5( I xl ) v,, (4. .x E (1) 
0, XErr,\ (II 

Here c(s) is a smooth shear function equal to unity for o,< ~,<a&? and to zero for s>a. By 
virtue of the kinematic condition we have v,\r = 0 at the free boundary. This, togetherwith 
the inclusion vi= Wnl(o), i = 1, 2 implies that luE W,l (R+2). Let us obtain an estimate from 
below for the integral 

Since w(s,,O)= 0 when x1 > 0, we have 

*Prikl.Matem.Mekhan.,46,No.6,pp.961-971,1982. 
**) See /l-44/ and also Solonnikov V.A. "Solvability of the problem of plane flow of a viscous 
incompressible capillary fluid in an open vessel". Preprint LOMI, Leningrad, No.P-5-77; and 
Jean M. "Free surface of the stationary flow of a Newtonian fluid in a finite channel", Pre- 
print de la Laboratoire de mkcanique et d'acoustique, Centre national de la recherche Scient- 
ifique. Marseille, 1979. 
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t-f By virtue of the adhesion condi- 
tion,wehave w(x,, O)-+ -Vsin em 

~~~~~~~~~~~~~: 

equality for 1 diverges logarith- 

,//// hand, using&eknown trace theorem 
--Y c-1 /8/ we find that for any function 

Fig.1 Fig.2 
w E W,l (R,? , 

I<C 5 low/"&r 
a>* 

where C>O is a certain constant. It follows therefore that when 0< em< n, theDirichlet 
integral of the function w is infinite. This in turn contradicts the assumption that vi E 
Wn'(o), i = 1, 2. 

We note that we made no use in the above discussion of the fact that the functions v1 and 
Vt together with the corresponding pressure p, satisfy the Navier-Stokes equations. The 

contradiction arose from the incompatibility of the adhesion conditions, conditions at the 
free boundary, and the assumption 8,, #=Oo, B,,,# n in the case of a moving point of contact. 
The incompatability was first noted in /9/ (see also f5/, a remark in p.350). Various methods 
ofremovingthiscontradictionare available. In /lo-12/ the finite values for the energy dis- 
sipation and force of friction against the wall were obtained by replacing, at some section 
of the wall, near the point of contact the adhesion condition, by various forms of the condi- 
tion of slippage. In /7,13/ an asymptotic solution was given for the problem ofafluidmoving 
alongaplanewall, the solution containing.asingle empiricalparameter,.namelythe angle a of 
inclination of the free boundary at the distance h from the wall. Here his a small quantity 
of the order of several intermolecular distances. 

The absence of a correct mathematical formulation for the problem of a moving point of 
contact increases the difficulties encountered in computing the similar flows. Thus when 
the problem of filling a capillary was solved numerically in /14/, the computations were 
arbitrarily terminated at some distance from the wall. The computational method given in /5/ 
ignores the presence of a singularity at the point of contact altogether. 

Let us formulate the basic hypothesis of the present paper. We assume that under the 
conditions listed above (plane stationary motion in a coordinate system attached to the point 
of contact, and an unwetted solid surface), with the fluid flowing forward, the angle em at 
which the free boundary approaches the wall, in equal to s (Fig.2). If in addition the free 
boundary is a Liapunov curve up to the point of contact and the velocity field belongs to some 
H&lder weight class (Sect.51, then we construct an asymptotics of the flow in the neighborhood 
of the point of contact. The asymptotics is such, that the tangential stress at the wall has 
an integrable singularity, the rate of energy dissipation near the point 0 is finite, and the 
asymptotics of the free boundary as x1-t + 0 is sz = 0 (xX2") where x = a~[--~ arctg 2k, 0< x< Iis; 
(exact formulation is given in Sect.6). Here k is a dimensionless parameter (we shall callit 
the capillary number) equal to pvV/o where p is the density of the fluid,visthekinematic 
viscosity coefficient and a is the coefficient of surface tension. 

It can be expected that the proposed hypothesis corresponds to a real flow of a poorly 
wetting fluid along a dry surface of low roughness. The above assumption is reinfoxced bythe 
fact that at large values of the static wetting angle @a the observed dynamic angle (identi- 
fied with 0,) is also large. The closer it is to x, the larger the parameter Ir=pvVl'lo (see 
/16/ where a large amount of experimental data was analyzed and /6f, which gives a survey of 
the experiments and models for the problem of dynamic contact angle). We also note the ap- 
proximate solution of the problem of dynamic contact angle given in /7/ for the angles of in- 
clination of the free boundary close to n, loses its validity when the capillary number k% 
1, but 
IT. 

2. 
ling of 
32 = 0 

it is precisely in this case, as /16/ implies, that the angle t$,, Is almost equal to 

Formulation of the problem. Let us formulate a plane problem of symmetrical fil- 
a capillary. We require to find a smooth curve r passing through the points rI = 0, 
and x1 = 0, Q = 1, and a solution Y, p of the Navier-Stokes equations 

-Av + (vV) v + Vp = 0, div v = 0 (2.1) 
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in the region P bounded by two semiinfinite straight lines Xl< 0,x0 = 0 and XI < 0, X? = I , 
and by the curve r (Fig.2), with the following boundary conditions: 

v1 = -1, vz = 0, x,< 0, x2 = 0 and xa = 1 (2.2) 

v.n =O,sSn = 0, K = k (P - 2nSn), (x1, x2) E r (2.3) 

Here Sis the deformation rate tensor, K is the curvature of the free boundary r,s and n 
are the unit vectors of the tangent and normal to r. We assume that K > 0 if ris convex 
away from the fluid. The vectors sand ndefine the right orientation of the .r,.r2 -plane. 

The equations (2.1)- (2.3) are written in dimensionless variables. The quantities V/l', 1' 
and pVz are chosen as the characteristic dimensions of length, velocity and pressure respect- 
ively (V is the physical velocity of displacement of the free boundary along the capillary). 
We assume that there are no external forces acting on the fluid. The function p denotes the 
difference between the pressure in the fluid and the atmospheric pressure, the latter assumed 
constant. The parameter k in the condition (2.3) represents the capillary No. defined in 
Sect.1. The equations (2.2) express the conditions of adhesion of the fluid to the mwing 
walls of the capillary, zz = 0 and x2 = 1. The first condition of (2.3) on the free boundary 
means that the curve I? is a streamline. According to the second condition the tangential 
stress at r is zero. The third condition of (2.3) expresses the fact that the normal stress 
at the free boundary is equal to the capillary pressure /5/. We impose on the solutionsought, 
in addition to (2.2) and (2.3), the condition of symmetry about the axis of the capillary 
52 = l/2. We require that the curve r be symmetrical about this line and, that after the sub- 
stitution x1 - 11.2 = Z, the function v1 and pbecome even, while vt becomes an odd function of 

21. 
Since the region B is not compact, the solution of the system (2.1) will require a cer- 

tain condition to be formulated for x1-+ --oo. It is natural to assume that the motion real- 
ized at a distance from the free boundary is close to the superposition of the Poiseuilleflow 
and a uniform flow. In other words, 

VI-). - 1 + 6Ps, (1 - EJ, vg -a- 0 (2.4) 

ap/a*, + - 121", ap/ax,+ 0, x1 + -00 

The limiting pressure gradient in (2.4) is such, that the rate of flow of fluid across a sec- 
tion of the capillary is zero, and this agrees with the first condition of (2.3). To close. 
the formulation of the problem, we must specify a condition at the points of contact 0 and 0'. 
In accordance with the hypothesis of Sect-l, we shall assume that the curve rtouches the 
lines x2 = 0, xz = 1 at the points 0 and O'respectively (Fig.2). 

There are grounds for assuming that the problem (2.1)- (2.4) with additional symmetry 
and tangency conditions is formulated correctly, although so far no proof has been obtained. 
Below we study the asymptotic behavior of the solution of the problem in question near the 
point of contact 0, under the assumption that a solution exists. We note that the proposed 
method of investigating the asymptotic behavior is fully applicable to the case of an axisym- 
metric flow in a circular capillary. Moreover, the resulting expressions for the free bound- 
ary (7.1) and tangential stress at the wall (7.2) have the same form when written for a cir- 
cular capillary in the local coordinates attached to the point of contact. 

In what follows, it will be conveneint to writetherelations (2.1)- (2.3) in terms of 
the stream function $ connected with the velocity components by the relations V, =8$/8x,, v2 = 

-W/~x,. According to (2.21, (2.3) the stream function retains its constant value along the 
whole boundary of the region B , and we can assume it to be equal to zero without loss of 
generality. The equation for the stream function and the boundary conditions (2.2) have the 
form 

(2.5) 

~=0,~~~~x,=--2,X,~0,~a=o~d xa=l (2.6) 

The conditions (2.3) at the free boundary assume the form /17/ 

t&=0, A$-2K+O, %+2$(s)- +$(?$)I-k-l$=O, (z~,z~)EI' (2.7) 

We assume that the field v is continous at the pint 0 at which the boundary conditions change. 
Since we have v1 = -i at the coordinate origin, the inequality v,< 0 holds for sufficiently 
small 15 I. In this case a subregion Uof 56 exists such, that 0~0 and &#/ax,,< -I’/, in 0. 
This makes possible the passage to the Mises variables, 
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3. Mises variables. Let us pass in the relations (2.5)- (2.7) to new variables x= 
xX,$ and new unknown function x% = y(x,$). In place of (2.5) we now have 

~~~~~~ - MY (~~)~ - YY;' (MY), = 0 (3.1) 

Although the line ris not known in the initial variables, in the Mises variables X,9 its 
image will be a segment of the straight line 11 = 0. We can assume without loss of general- 
ity that the image of U is a semicircle & = {x,9 :x2 $- $*< I?, @< 0). Moreover, -2 < yyr < -Ii, 
in n, provided that E> @is sufficiently small.The mapping @I* G)-+ 6% #is one-sheeted in&. 

The conditions on the wall (2.6) and at the free boundarv (2.71 are written in the t+fLses 
variables as follows /17/: 

YSO, y.$=---l, 2<0, *=o 

The solutions of the equation (3.1) with conditions (3.2), (3.3) Close 
terest. We note that the function--$itself satisfies (3,1)- (3.3) and 
in the x1x* -plane is a uniform stream. We set 

Y = -9 + z (XI $1 

(3.2) 

(3.3) 

to y = -21) are of in- 
the corresponding flow 

(3.4) 

and substitute (3.4) into (3.1)- (3.3). After separating from the resulting equations the 
terms containing higher order derivatives linear with respect to the new unknown function 2, 
we obtain 

~lp-5x=‘pz(%,z~,...,z~~,z~~+3%~- 

k-%,x = 91 kw 4, . . ..Z!&?). O<x<e, q-0 

~~~E(AL$-LA-L~)z$z~(A-~)~z-(A-~)z[(A-L)x]~- 
(1 --&'[(A - ~9% 

cp2=zoAz + (1 - z&5z - 2(1 + z,~)-L~~z~~ 

(3.6) 

q1= Gw* - *[(A-L)zl,-,[(A--)&- 

The right-hand sides of (3.5) are of second order of smallness with respect to the derivatives 
of 2 when they tend to zero. Separating in these equations the principal (at small z) terms, 
we can hope that it is precisely these terms that determine the leading term of the asymptot- 
its of the flow near the point of contact x = * = 0. We note that by virtue of (3.4) and of 
the definition of g I the equation of the free boundary in the plane of flow is 2; = Z(XX, 0). 
Assuming now that %,~1,~1 are known functions of x and 9 defined over the whole half-plane 
$< 0 and on the whole x-axis respectively, we find that the problem (3.5) (in the condi- 
tions of which we must put e = w), can be solved explicitly using the Mellin transform. Sect. 
4 deals with its solution. 

4. The formal asyrnptotics. We consider the linear problem 
d&z= 5*(x,*)9 --oo< I< rn,q< 0 

2=0,y=0,5<0,*=0 

z* - z,, = 5e (XL ZlpJnp -t- 32%,$1 - k-'z,,, = 5,(*), 5 > 0, l!J = 0 

(4.1) 
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where Cot L Co are known functions of their arguments. We shall assume them to be suffic- 

iently smooth and such, that i,, = 0 when I' -I-$ *'l,&=O,~a=O andrr),l. / Let us pass to 
the polar coordinates P = (I* + (I*)'", cp = arc@ (q/r) in the w-plane. We find the solution of 
the problem (4.1) written in the new variables with help of the Mellin transform 

g*(h)= ~g(P)pJ~-'dP (4.2) 

0 

Setting 
r* = UJ (cp, h), gJ* = GJ (% A) (gJ = P”‘6j (P COS Cp,. P Sill Cp), j = 0, I,??) 

and assuming that ih=a, we arrive at the following boundary value problem for the function 
W: 

(4.3) 

w = 0, wq = 0, cp = -_n 

ww -a (a + 2)~ = G?, u'~ + @a*+ 6a + 4) wcp + 
k-la (a $ 1) (a + 2)w = G,, cp = 0 

Let us now explain at which values of a the homogeneous problem (4.3) has nontrivial solut- 
ions. If a # 0,a # -1,a # -2, the solution of the homogeneous equation for whas the form 

w = C, co9 acp + C, sin arp + Cs cos (a + 2) cp + C,sin (a + 2) cp 

where C,, . . ., C, are arbitrary constants. Substitution of w into the boundary conditions (4.3) 
yields a system linear in C,, . . . . CI with the determinant 

4 (a) = 8a (a -I- 1)' (a + 2) cos an (2 cos an - k-l sirI an) 

Apart from a = O,- 1,-2, the following values of a (m is an arbitrary integer) are zeros of 
the determinant A (a); 

a = ih = m + ‘j2, a = ih = m + x; x = n-l arctg 2k 

Additional computations show that the homogeneous problem (4.3) has no nontrivial solutions 
when a=O,a=--i,a=-2 Let us write its nontrivial solutions (eigenfunctions) 
corresponding to the values a= _a/ 12 anda=x-2 

UJ = wO G sin cp/2 + sin 3~12, a = -afz (4.4) 

w = wl= (X - 2) ainxcp -x sin (x - 2) cp - 2k(x - 2)cosxcp + 2kx COS(X - 2)cp, a = x -2 

The above solutions of (4.3) have the following corresponding solutions of the homogeneous 
problem (4.1): 

20 = p"*wo (cp), 2, = pz-x'ul (cp) 

The determinant A (a) has simple zeros at the points a = m +'/a, a = m i-x , therefore the 
problem (4.3) has no associated functions. The value a = --'II is the smallest value of a 
for which the solution z = p"w(rp,-ia) of the homogeneous problem (4.1) and the functions 
zp7 p-12, all tend to zero as p+ 0. There are grounds to expect that the asymptotics of the 
solution zof the nonlinear problem (3.5) satisfying the conditions z-0, Vz+O, has the 
following form as p*O : 

2 = %PQ% (cp) + a,p*-Xw, (cp) + 1 (PI cp) (4.5) 

where a. and a, are certain constants, w0 and w1 are functions defined in (4.4), and q is the 
remainder term. Indeed, replacing z in (3.5) by the first two terms of (4.5) shows that the 
order of every terms of the resulting left-hand parts is less, as p-to, than the order of 
the right-hand parts. 

The remainder of the paper provides the substantiation for the representations (4.51, 
i.e. proves that n = O(p*-P), JVq 1 =0($-Y) as p-t 0 , etc. Here y is a some positive number 
smaller than x (we recall that Oi xi 1/n and x-t0 as k+O,x+ I/* as k-too). Use of the 
formulas of the form (4.5) in solving the Dirichlet and Neumann problems as well as for solv- 
ing the linear problems of the theory of elasticity is well known (see e.g. /18/j. They were 
established in /19,20/ with the purpose of solving the general linear elliptic boundaryvalue 
problems. The author of /21/ obtained the asymptotics in the neighborhood of the corner point 
of the solution of the first boundary value problem for the quasilinear equation (2.5) equiv- 
alent to the Navier- Stokes system. 



5. Functional spaces. Let US determine the basic functional spaces used in studying 
the elliptic boundary value problems in the regions with irregular boundaries,andtheproblems 
with different boundary conditions at different parts of the boundary (see /19,22/). Let, as 
in Sect.4, &c 12' be a semicircle IX i = (xl’ -f- ~~‘rfi< 8, z%h( 0 and let Z', denote the segment 
(0,ef of the real axis. Let 1~ and p be nonnegative numbers and n be an integer. Under 
H,"(n,) we shall understand the space of functions which have, in I&, the derivatives of up 
to the n-th order inclusive and the finite norm 

(5.1) 

generalized in the S.L. Sobolev sense. Under Hw**ls(T,) we shall understand a space of func- 
tions defined on T,, with the derivatives of up to and including the n-th order, and the 
finite norm 

(5.2) 

Finally, when E> 0 is not an integer and s< 1, we define the space C,O*i(&)as a set of 
111 -times continuously differentiable functions with a finite norm (111 denotes the integral 
part of 1) 

We define the space C,@j(TJ in exactly the same manner, and its norm is given by the formula 

Lemma 1. For u 

and for u E H,""+'lz (Te) 

Indeed, under the conditions of the lemma all integrals converge in the norms (5.1) and (5.21, 
and this can be easily confirmed. 

Lema 2. If uEH,," (&)and n> 1, then 

(5.3) 

and the constant C>O is independent of u and E when O< E<E~. 

Proof. Let ZE& and K,=(y~n,: I~llZ<l*l</r[}. We use the known multiplicational est- 
imate /23/ 

Let US multiply both parts ofthe inequality by Ix~'+~*". Since 



then the above inequality yields (5.3) for any real a* 

6. Substantiation of the validity of the asymptotic expansion. First we con- 
sider the linear problem (4.1). 

Lema 3. Let the function z(I,$) EHH,' (&) h ave a finite norm sup y f *x)-@+WI z (2, Q) 1 (x, 
9) E HE and satisfy the relations (4.1) in which &, tZ C"&,"(&), 5, E C~:,+a(Tz), caEC%"(!fa), 
with a, SE (0, 1). Then z E e$sm (b), e' E (0, E) and 

I 2 l&ynS,) c (2 ( I co I#$;@&> + 151 Icg+&f + 

1 b b?yW~~ II, 
+ sup@* + ga)-@+l)'* i&491 f 

The lemma is well known. It follows from the theorems on smoothness of solutions of the el- 
liptic boundary value problems right up to the boundary , and from the local Schauderestimates. 
The following assertion implied by the results of /19,20/ concerns the behavior of the solu- 
tion of the problem (4.1) near the coordinate origin, at which point the boundary conditions 
change. 

Theorem 1. Let the function ZE Hwb(II,) satisfy the relations (4.1) in the region IIt, 
and let &EH,,' (n,), & E HW:/* (Te), Ge65 HM:'* (Te) where p E (3/2, 2) and pl< P. If pL1 >s/zl then 
2 E H,,4(IT,,) for any E1 E (0, 4. If on the other hand p.1 E (1, 1 +x), then the formula (4.5) 

in which the function nEH,,:(&,) also satisfies (4.1), holds forzw 
Theorem 1 providesthejustification for the formula (4.5) also for the nonlinear problem 

(3.5). 

Theorem 2. Let the function ZE C$jl"(&) where U and 6 are arbitrarily small positive 
numbers, satisfy the relations (3.5) in IT,. Then the formula (4.5) in which n E C$!F(n,,), 
with arbitrary s1 ~(0,e), y =(0,x) , holds also for this function. 

Proof. It can be confirmed that the functions 

'po(z,,..*, Z~~~~~~(~,~), %(2x7 * * ~~%$&+0=~1G4 

q&(2x, *.., z~)i~=~~(~) 

defined by the formulas (3.6) have the following properties: if z= @$"(I&), s~(0, I), then 

(DOE C$_",(II,), %E C;;Y(Te.), cDe E CP(T,) 

and hence by virtue of the lemma 1 

Qt, E &a@,), CD, E H,',z(T& @,, E H;"% (TBf (6,l) 

for any p E(2 - 2% 2). It follows that under the conditions of the inclusion theorem (6.1) 
holds for any p = p. from the intervals (max (3/2,2-26), 2). Consequently by virtue of the 
theoremwehave 1 a E HP.‘ (&A Va, < s. By virtue of Lemma 2 the valuerap P-(~~+*)Iz (x, $) 1, (x7 $) 6% &where 
p = (2" t_ @)'ls, is bounded for all s, of the form s1 = 2 - p, E (0, min (*/,, 26)), and from Lermna 

3 we can conclude that z~EC~:~~ (II,,). The number ~1 can be larger than 6. Repeating the 
above arguments we can, if necessary, 
'f* 

show in the end that z EC~;',+~(I"&J with any e,<e, s< 
Let us take the value of s sufficiently close to 'i,: SE ((1 -x)&‘/J. Then 

ZE &L8f&JI @o E C%(&) c Ho,, (W 

a1 E ci+l (TEJ c I$;( T,), @z E c;;_y (TeJ E H;!’ ( TQ) 

for all p E (2 - s,2)C(Vs,2) and pL1 sufficiently close to 2-2s, so that we can assume that 
.@1 E (1,l + x). Thus we see that the conditions of Theorem 1 all hold, and this implies the 
validity of the formula (4.5) with n EzH,,‘(KI,,),V~~,> a*> a. Lemma 2 now implies that the 
function n has a bounded norm sup pr* / q (x,@)l, (x,q) f: I&, where y = p, - P ~(0, x)isanumber 
arbitrarily close to x. Now, since n(z,q) satisfies the relations (4.1) with & = Qi, there- 
fore n G C'&"(n,,) , and this completes the proof of the theorem. 

7. Concluding remarks. lo. In Sect.1 we note the incompatability of the conditions 
of adhesion, conditions at the free boundary and the assumption O<&<a in the case of a 
plane stationary flow in a coordinate system attached to the moving point of contact. The 
arguments employed there can be transferred without major changes to the case of a nonstation- 
ary motion. We shall formulate the result obtained. Let the amount 
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of kinetic energy of the fluid dissipated over the time T be finite in the region of flow 
Q (t). containing the moving point of contact at its boundary. Then the dynamic contactangle 
&,, can assume one of the following two values: 0 or x, for all t~I0, TI. 

20. Theorem 2 whichgivesthe estimate for the residue term of (4.5), represents the 
sufficiently strict initial demands regarding the smoothness of the field of flow. The de- 
mands can be relaxed by considering the problem in terms of the physical variables v(zl.zp), 

P(Q~~B) (this however makes the construction of the asymptotics more complicated). Itis namely 
sufficient to require that r be a Liapunov curve with index d up to the point 0, belonging 
everywhere,exceptat 0, to the class C'+=, and, that the vector function v has a finite 
Dirichlet integral. Then by virtue of the lemma 3 of /24/ 1 satisfies the Halder condition 
with the index a,\(8 up to the point 0 and belongs therefore (see /24/, Theorem 5) to the 
class cz+? Further smoothing of the field \-is carried out according to a scheme analog- 
ous to that given above in the proof of Theorem 2. 

30. We shall give the asymptotic expressions for the tangential stress at the wall and 
the forms assumed by the free boundary near the point of contact. The equation of the free 
boundary is zp = z (zl,O)r f(s), z1 > 0, since the image of this line in the +$-plane is a seg- 
ment of the straight line Ip=O. From (4.4) and (4.5) we obtain 

f (zl) = 4kalz?-x + 0 (z:-~), q-, +O (7.1) 

We see that the free boundary beccnnes smoother, the smaller the parameter x =n-larctg2k (or, 
with the remaining parameters fixed, the larger the coefficient of surface tension 0 entering 
the formula describing the capillary number k = pvlrl,). Since y>O (although it can be 
arbitrarily small), we find that when al#O, then the curvature of the free boundarybecomes 
infinite at the point of contact. 

The dimensionless tangential stress at the wall equal to 2S,, (I,, O), II< 0 (S is the deforma- 
tion rate tensor) is written in the Mises variables in the form 

2s la,x,<o,x,=o = [Q&l -%)3~lx<a,rlr=o 

According to (4.4) and (4.5) we have 
2s,, (I,, 0) = 2ao 1 z1 I-“1 + 0 (I z1 f-v), II - -0 

(7.2) 

It is interesting to note that since rco(O)=O, the principal term of (4.5) makes no contribu- 
tion towards the asymptotics of the free boundary (7.1). Conversely, the second termof (4.5) 
does not enter the asymptotics of tangential stress (7.2) since w,(n)=O. 

40. We shall comment briefly on the situation arising in the course of investigating 
the asymptotics near the point of contact when the liquid separates from the wall (problem of 
drying the capillary). The formal acceptance of the hypothesis em= nleads in this case to 
the parameter x becoming negative --'lp<x<O . At the same time the principal and the second 
term of the asymptotics in (4.5) must be interchanged, with Z--X in the second term replaced 
by 1 --x). The proof of Theorem 2 must also be changed somewhat. It is however physically 
unjustified to assume that when the liquid separates steadily from the wall, 0,=x. It 
could be postulated in analogy with the previous arguments that in this case e, = 0. Computa- 
tions however show that in this case a power asymptotics of the free boundary of the type 
(7.1) with the index greater than unity, and a power asymptotics of the velocity field con- 
tinuous near the point of contact are both impossible (it is unclear whether the asymptotics 
could be superexponential). It seems that a scheme in which the points of contact are alto- 
gether absent and a liquid film remainsonthe surface of the capillary, with the thickness of 
the film asymptotically tending to a constant which may be equal to zero, is more realistic 
in the case of the stationary problem of drying a capillary. 
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